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Time Domain Modeling of Impedance Boundary
Condition

C. F. Lee, R. T. Shin, and J. A. Kong

Abstract—A methodology developed to handle dispersive materials in
the time domain is extendedl to model the dispersive characteristics of
the impedance boundary condition used for a thin layer coating over
perfect conductors, The impedance boundary condition is first approx-
imated as a rational function of frequency. This rational function is
then transformed to a time domain equation, resulting in a partial
differential equation in space and time. Discretization of the time do-
main model to efficiently handle the thin layer coating is presented in
the context of the finite-difference time-domain (tfD-TD) techniqne. The
methodology is verified by solving a one-dimensional problem using the
FD-TD technique and comparing with the analytical results.

I. INTRODUCTION

Electrically fine structures often appear in practical applications.
To resolve the electromagnetic behavior of these structures, very
fine grids are needed in numerical techniques (e. g., the finite-dif-
ference time-domain technique). Alternatively, one may incorpo-
rate the localized physical behavior, such as the impedance bound-
ary condition [1] and thin wire formulations [2], [3], of these fine
structures into discretization schemes.

Thin surface coatings on metallic bodies appear in many scatter-

ing problems. In principle, these thin surface coatings can be mod-
eled numerically and geometrically by very fine grids with appro-
priate discretization schemes. The disadvantage associated with

such an approach is the large computer memory requirement. Fur-
thermore, in the finite-difference time-domain (FD-TD) technique,

the time increment is usually determined by the smallest grid size
in the entire computational domain to satisfy the stability condi-
tion.

In modeling a thin layer coating in the frequency domain, the
concept of impedance boundary condition can be used to avoid the
fine layers of grids. The impedance boundary condition relates the
tangential fields on the coating to their normal derivatives, which
is derived using the configuration of a half-space conductor with
thin layer coating. The resulting impedance boundary condition is
frequency dependent, and this dispersive nature of the impedance
boundary condition causes difficulty in the time domain modeling.

In this paper, a time domain technique used to treat dispersive ma-

terials is employed to convert the impedance boundaty condition
to the time domain [4]. Following the idea in [5], the impedance
boundary condition is approximated by a rational function of the
frequency. Then, the tangential fields are related to their normal
derivatives by a partial differential equation in space and time. A
numerical discretization scheme in the context of the FD-TD tech-
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nique is discussed and the overall scheme is verified numericidly
for a one-dimensional configuration.

II. TIME DOMAIN DESCRIPTION OF THE IMPEDANCEBOUNDARY
CONDITION

The impedance boundary condition of the coated conductor can

be derived based on a two-layer configuration (Fig. 1). By ignoring
the variation along the tangential directions, the tangential electric

field can be related to its normal derivative by the following equa-
tion:

(1)

where k is the free space wavenumber, p, and .s, are the relative
permeability and relative permittivity, respectively, and q, =
m is the relative impedance (impedance normalized to qo).
Inverse Fourier transformation may be used to convert the above

equation to the time domain. However, it is relatively complicated
and the result may not be suitable for numerical analysis. Instead,
following the procedure outlined in [5], the above equation is ap-
proximated using a rational function of the frequency. With the
substitution of – iti by ~/at, the time domain description of the
impedance boundary condition is obtained.

The rational function approximated of (1) can be obtained by

expressing the tangent function as the ratio of sine and cosine. Next,
the Taylor series expansions of these two functions are used to
obtain the rational function form. By keeping the first two terms in

the Taylor series expansions of the sine and cosine functions, the
first-order rational function approximation is obtained,

(2)

Similarly, by keeping the first three terms of Taylor series expan-
sion, the second-order approximation can be obtained:

In general, both the relative permittivity and permeability in (2)
and (3) can be complex to account for electric and magnetic losses.
However, in this paper, we will consider only the loss due to elec-
trical conductivity.

The time domain expressions corresponding to (2) and (3) ean
be obtained by substituting – iu by a/at, or equivalently, – ik by
a/&, where T = cot is the normalized time. Assuming electrical
conduction loss only, we obtain

(4)

where E’, u and q. are dielectric constant, electric conductivity and
free space impedance, respectively. The first-order time domain
description of the impedance boundary condition corresponding to
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P incident pulse

(5)

Applying the same transformation to (3), the second-order time
domain description of the impedance boundary condition is given
by

(6)

The above time domain descriptions of the impedance boundary
condition are partial differential equations in space and time. In
fact, these equations may be derived directly in the time domain
with a finite difference approximation and a simple averaging
scheme [4] (see Appendix). The impedance boundary condition ac-
counts for the interaction between air-dielectric interface and con-
ducting surface. In the time domain there is a time delay associated
with this interaction. This delay is partially modeled by (5) and
(6) .

III. DMCRETIZATION

There are many discretization schemes one can use to discretize
(5) and (6) for the finite-difference time-domain technique. The
discretization of the normal derivative is quite important in the im-
plementation of the impedance bounda~ condition. In order to have

an accurate approximation, the vanishing tangential electric field
on the conducting surface is used. This leads to interpolation of the
electric field in three or more locations. Employing the Lagrange
interpolation formula for three electric fields (Fig. 2), the normal
derivative is discretized as follows:

aE a

[

a2-1
E2 ~

1
El .

ayl= AY(l + a)
(7)

E().O El E2

Fig. 2. Discretization nodes for normal derivative

In the above equation a represents the ratio of the layer thickness
to the grid size, A /AY. It turns out that a better approximation of
the normal derivative can be obtained by including the effect of the
dielectric constant of the coating. Because the wave velocity in the
coating is slower than that in the free space where discretization

applied, the effective thickness of the coating should be A a.
Therefore, the following equation is used:

A&
a=—

AY “

The temporal derivatives in (5) and (6) may also be discretized in
many forms. A simple second-order center-differencing is used in
this paper.

IV. NUMERICAL RESULTS

Equations (5) and (6) describe the time domain modeling of the

impedance boundary condition given by (1). Equation (7) and cen-

ter-differencing in time provide a possible discretization scheme.

To validate the approach outlined in this paper, a one-dimensional

reflection problem is simulated using these models together with

the finite-difference time-domain method [3]. The reflected wave

is calculated in the time domain and Fourier transformed to obtain

the reflection coefficient as a function of frequency. The results are

compared with the exact solution obtained directly in the frequency

domain.

Fig. 1 shows the configuration of the problem. The layer has

thickness of 0.2 cm. The coating material is assumed to have di-

electric constant of 5 and conductivity of 0.2 mho/meter. The

computation domain contains 500 nodes with grid size being 0.2
cm. The normalized time increment A, is 0.2 cm to satisfy the
stability criterion and to minimize numerical dispersion. At the first
node of the computational domain, an incident Gaussian pulse
modulated by a carrier at 8 GHz is imposed. This Gaussian pulse
has a half-power pulse width of 0.0625 nano-second, which cor-
responds to a bandwidth of 6 GHz. The last node of the computa-

tional domain is placed at the free space/dielectric interface where
the first-order or the second-order approximation to the impedance
boundary condition (IBC) is applied to simulate the thin layer coat-
ing.

The exact solution for the reflection coefficient is given by

iq, tan (k A~,) + 1
R(k) =

iT, tan(k A~) – 1’
(8)

where q, and e, is complex. For the assumed parameters, the mag-
nitude and the phase of this reflection coefficient are plotted in Fig.
3(a) and (b) (solid curves), respectively, from 2 GHz to 16 GHz.
The results obtained by using the FD-TD simulation are also shown

in Fig. 3(a) and (b). The ‘‘ O‘’ and ‘‘ +‘’ curves represent results
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Fig. 3. (a) Magnitude ofreflection coefficient versus frequency.(b)
of reflection coefficient versus frequency.

Phase

obtained using (5) and (6), respectively. Both the first- and the
second-order approximations yield good agreement with the exact
solution in the phase of the reflection coefficient. However, the
advantage ofusing the second-order approximation, (6), is clearly
shown in the magnitude of the reflection coefficient. The results
obtained using the first-order approximation match the exact solu-
tionat low frequencies with increasing discrepancy at higher fre-
quencies.

Fig. 4showsthe percer~t error of thereflection coefficient mag-
nitude as a function of the coating thickness. These errors are for
the FD-TD results with the second-order approximation of the IBC

using the same grid size and the same material parameters while
varying the coating thickness. The three curves represent errors at

three different frequencies. The errors forthehalf-power frequen-
ties, 5 GHz and 11 GHz, are shown by “+” and “x, ” respec-
tively. The errors at the carrier frequency are shown by “O. ”
These errors are all well within 1.0 percent, and they increase with
increasing thickness, as expected. It should be noted that the errors

are relatively small even when the thickness of the coating is up to
1/5 of the wavelength inside the layer as in the case of 11 GHz at
the thickness of 0.25 cm.
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Fig. 4. Percentage error for second-order IBC versus coating thickness.

V. SUMMARY

In this paper, a time domain modeling of the impedance bound-
ary condition is derived and expressed in terms of partial differ-
ential equations in space and time. A possible discretization scheme
which incorporates the effective thickness of the layer is presented.
Numerical results indicate the validity of the modeling as well as

the suggested discretization scheme. Although this model is only
verified for a one-dimensional problem, the generalization to higher
spatial dimensions is possible since the equation is applied only at
the interface. However, tangential variations may need to be con-
sidered in those cases. Furthermore, the concept of using the ra-
tional functions to approximate the frequency domain response und
converting to the time domain may be used to characterize other
fine structures.

AEWEtNtXX

For simplicity, the relative permittivity and permeability are as-

sumed real. For a plane wave normally incident with waveform g,

El = g(7 + y), ‘qoHt = –g(7 + y). (Al)

the reflected and transmitted waves are

E, = f(~ – y), ?JoH, =f(~ – y);

E,=p(r+Gy+~A)

— p(T–&y– ~, A);

qoH$ = –$p(T+ ~y+ ~,A)

(A2)

(A3a)

1— ;p(v~y-fi A); (A3b)

In (A2) and (A3), the subscripts r and s denote the reflected wave
and the wave inside the coating, respectively. Note that the bound-
ary condition on the surface of the conductor has been satisfied.
Imposing the boundary conditions of continuous tangential electric

and magnetic fields at the interface,

E=g(7)+~(~)=p(~+~A) –P(~– &A),

(A,4a)
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VOH = g(~) +f(T) = –;P(T + ~,A)

— ;p(r – GA). (A4b)

In addition, the total tangential electric and magnetic fields are re-
lated by:

E = 2g(T) + ~oH. (AS)

Applying the center-differencing and averaging approximations:

P(~+~A)–P(7–=A)

2A G p ‘(~) + j A3(W,C,)3’2P’” (T) (A6a)

p(r+~A)+p(T– 6A)

- 2p(7) + A2p,E.p’’(T), (A6b)

where “’” denotes derivative with respect to the argument. Sub-
stituting these back into (A4),

2g(T) = ; p(7) + 2A&p ‘(T)

A3

+ ~ ,arerp “(7) + ~ (W, )3’2P’” (T) (A7)
~r

qoH = – ~ [2p(~) + A 2~,e,p “ (~)] . (A8)
Vr

Substituting (A7) and (A8) to (A5), E is related to the first and
third derivatives of p(~). Again, using (A8) and ignoring the terms

involving derivatives higher than third order by assuming slowly
varying field in the time scale of AT:

Using Maxwell’s equations:

(A9)

This is what one expects if one expands, in Taylor series, the tan-

gent function in (1) and converts the expanded equation to the time
domain using the procedure described earlier.
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Comments on “Criteria for the Onset of Oscillation
In Microwave Circuits”

Robert W. Jackson

The paper listed abovei notes that the device reflection coeffi-
cient, J7d(s), in the expression,

rd (s) ~J7+ =

1 – rd (s)r, (s) ‘

represents the port reflection coefficient of a device which may re-

sult in an unstable circuit only after connecting it with a resonator
having a reflection coefficient, rC (s). This is an important condi-

tion and IS somewhat vague as worded. In order to use tbe Nyquist

criterion to determine the stability of the device-circuit combina-
tion, I’~ must have no right half plane poles. This amounts to in-
suring that the device does not oscillate into the reference imped-
ance (50 ohms for example). If rd has been determined from
measurements, presumably the device is not oscillating during the
measurement and therefore there are no right half plane poles.

In CAD simulations of possibly unstable circuits, the location of
r~ poles is not always so clear. For a simple amplifier circuit such

as the one described in the above referenced paper, one can assume
no right half plane poles in I’d if the ,S1~ and/or &2 coefficients of
the FET have magnitudes less than one. To see this. consider the
partial circuit formed by a 50 ohm termination on port 2 and any
passive termination on port 1 If IS1, I < 1, the input termination
sees a passive impedance and therefore the partial circuit is stable.
Since the partial circuit is stable, rd (50 ohm reference) seen look-
ing in at port 2 has no poles in the right half plane. If. as in the

amplifier examplel, rd has a magnitude greater than 1, the Nyquist
criterion as described can then be applied to study the stability ef-
fects of various port 2 terminations. In simulations using devices

with extra feedback, oscillators for example, often the magnitudes
of SI, and S22 are both greater than one and this approach breaks
down.

A more generally applicable use of the Nyquist stability criterion
has been known for years, but the current widespread use of mi-
crowave CAD makes it must easier to apply. As discussed in the
literature [1], [2] the admittance between any two nodes in an ac-
tive circuit cannot have right half plane zeros if the circuit is to be
stable, If one were to apply the Nyquist test to such an admittance,
the resulting Nycwist locus of points cannot encircle zero in a-.
clockwise sense if the circuit is stable. It is trivial for modem mi-

crowave CAD programs to calculate the necessary admittances vs
frequency, Polar plotting of admittances is not always available but
a quick sketch is easy to do. It should be noted that the number of
Nyquist encirclements only gives the difference between the num-
ber of right half plane zeros and poles in the admittance function.
If, for example, the admittance at a particular node pair has an

equal number of right half plane poles and zeros, the Nyquist plot

would not encircle the origin even though the circuit is unstable.

Thus a clockwise encirclement insures instability, but no encircle-
ment does not insure stability. Since admittances at various node

lR. W Jackson,
pp. 566-568, Mar

IEEE Trans. Microwave Theory Tech., vol. 40, no. 3,
1992.
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